ඇවගාඩ්රෝ නියතය
රසායන විද්යාවේ සහ භෞතික විද්යාවේ දී ඇවගාඩ්රෝ නියතය හෝ ඇවගාඩ්රෝ අංකය (සංකේත: L, NA ) යනු ද්රව්යයක මෞලයක් තුල අඩංගු සංඝටක අංශු (සාමාන්යයෙන් පරමාණු හෝ අණු) සංඛ්යාවයි. එයට මෞලයෙහි (mol ) ප්රතිලෝම මාන ඇති අතර එහි අගය 6.02214129(27)×1023 mol-1 (6.02214129(27)×1023 මෞලයට) වේ. [1][2][3]SI ඒකක වලදී මෞලයට (mol-1 ) ඒකක වලින් ප්රකාශ කිරීමේදී එම අගය හරියටම 6.02214X×1023 ලෙස සලකනු ලැබේ (මෙහි “ X “ යන්න ඉහත සදහන් අගයේ අවසාන සංඛ්යාංකයකට හෝ කීපයකට සමාන වේ , නව SI අර්ථදැක්වීම් බලන්න).
උපත | 9 අගෝස්තු 1776 Turin, Italy (ටියුරින්, ඉතාලී) |
විපත | 9 ජූලි 1856 (වයස 79) Turin, Italy (ටියුරින්, ඉතාලී) |
ජාතිකත්වය | Italian (ඉතාලියානු) |
ක්ෂේත්රය | Physics (භෞතික විද්යාව) |
ආයතන | University of Turin (ටියුරින් විශ්වවිද්යාලය) |
හදුන්වනු ලබන්නේ | Avogadro's law (ඇවගාඩ්රෝ නියමය) Avogadro constant (ඇවගාඩ්රෝ නියතය) |
ඉහත අර්ථ දක්වන ලද රසායනික අගය සම්බන්ධිත ඇවගාඩ්රෝ සංඛ්යාව, ඇවගාඩ්රෝගේ කල්පිතයට අදාල ඓතිහාසික කරුණක් වන බැවින් අන්තර්ජාතික ඒකක පද්ධතිය (International System of Units) විසින් එය නැවත රසායනික සංකල්ප මත අර්ථදැක්වීමේ අවශ්යතාවයක් ඇතිවිය. ඇවගාඩ්රෝ සංඛ්යාව යනු හයිඩ්රජන් පරමාණු ග්රෑම් එකක අන්තර්ගත හයිඩ්ර්ජන් පරමාණු සංඛ්යාව ලෙස පෙරීන් විසින් අර්ථදක්වන ලදී. පසුව එය කාබන්-12 සමස්ථානිකයෙහි ග්රෑම් 12 ක අඩංගු පරමාණු සංඛ්යාව ලෙස නැවත අර්ථදක්වන ලදී.[4] එබැවින් ඇවගාඩ්රෝ අංකය යනු මාන රහිත අගයක් සහ දෙන ලද පාද ඒකකයට සංඛ්යාත්මක වටිනාකමක් පමණක් ඇති නියතයකි.
NA[5] හි අගයන් විවිධ ඒකකයන්ගෙන් |
---|
6.02214129(27)×1023 mol−1 |
2.73159734(12)×1026 (lb-mol)−1 |
1.707248434(77)×1025 (oz-mol)−1 |
ඉතිහාසය
සංස්කරණයඇවගාඩ්රෝ අංකය පළමුවරට හදුන්වනු ලබන්නේ, 19 වන සියවසේ මුල් අවදීයේ දී ඉතාලී ජාතික විද්යාඥයකු වන ඇමඩෝ ඇවගාඩ්රෝ විසින්, දී ඇති උෂ්ණත්වයක් හා පීඩනයක් යටතේදී ඕනෑම වායුවක ස්කන්ධය එහි ඇති පරමාණු හෝ අණු සංඛ්යාවට සමානුපාතික බව (ඇවගාඩ්රෝ කල්පිතය) 1981 දී මුල් වරට ප්රකාශ කිරීමත් සමගය.[6] එම අගය ඔහුට කරන ගෞරවයක් ලෙස ඇවගාඩ්රෝ නියතය ලෙස ප්රංශ ජාතික භෞතික විද්යාඥයකු වන පෙරීන් විසින් 1909 දී නම් කරන ලදී.[7] ඇවගාඩ්රෝ නියතය හි නිරවද්යතාවය විවිධ ක්රමයන්ගෙන් සාධනය කිරීම උදෙසා පෙරීන් විසින් 1926 දී භෞතික විද්යාව පිළිබද නොබෙල් ත්යාගය ද හිමිකරගන්නා ලදී.[8]
ඔහු සොයාගත් ඇවගාඩ්රෝ අංකය පළමුව ජර්මන් ජාතික ජෝන් ජෝසප් ලෝෂ්මිඩ්ට් විසින් 1865 දී ගණනය කරන ලදී. එම අගය , පහත සමීකරණය මගින් ගණනය කල හැක.
මෙහි යනු පරිපූර්ණ වායූ අණු ඝනත්වය, යනු පීඩනය, R යන වායු නියතය හා යනු නිරපේක්ෂ උෂ්ණත්වය වේ.
ඇවගාඩ්රෝ සංඛ්යාව නිවැරදිව ගණනය කිරීම සදහා එකක යම් මිණුමක් හා එම ඒකකයෙන්ම මෞලයක මිණුමත් අවශ්ය වේ. පළමු වරට ඇමරිකන් ජාතික රොබට් මිලිකන් විසින් 1910 දී ඉලෙක්ට්රෝනයක ආරෝපණය සොයාගැනීමත් සමග (මිලිකන්ගේ තෙල් බිංදු පරික්ෂාව) ඇවගාඩ්රෝ සංඛ්යාව ගණනය කිරිමට හැකි විය. මන්ද යත් ඒ වන විට මයිකල් ෆැරඩේ විසින් 1834 දී ඔහුගේ විද්යුත් විච්ඡේදනය පරීක්ෂණ මගින් ඉලෙක්ට්රෝන මවුලයක ආරෝපණය සොයාගෙන ප්රකාශයට පත් කර තිබූ බැවිනි. එ බැවින් ඉලෙක්ට්රෝන මවුලයක ආරෝපණය එක ඉලෙක්ට්රෝණයක ආරෝපණයෙන් බෙදීමෙන් ඇවගාඩ්රෝ සංඛ්යාව ලබා ගත හැක.[9] 1910 න් පසු කරන ලද නව ගණනය කිරීම් වලට අනුව ෆැරඩේ නියතයෙහි හා ඉලෙක්ට්රෝණයක ආරෝපණයහි අගයන් වඩා නිරවද්යව ලබාගෙන ඇත. (පහත #මිනුම් බලන්න)
ඔක්සිජන් 32 සමස්ථානිකයෙ අණුක ස්කන්ධයකට සමාන ඔක්සිජන් ග්රෑම් ප්රමාණයක(හරියටම ඔක්සිජන් ග්රෑම් 32 ක, එකල අර්ථ දැක්වීම් වලට අනුව) අඩංගු අණු සංඛ්යාව හැදින්වීම සදහා ඇවගාඩ්රෝ නියතය ( ) යොදාගන්නා ලෙස මුලදී පෙරීන් විසින් යෝජනා කරන ලදී.[7] නමුත් 1971[10] දී අන්තර්ජාතික ඒකක පද්ධතියට (SI) ද්රව්ය ප්රමාණය මැනීමේ ඒකකය ලෙස ඇවගාඩ්රෝ නියතය එක් කිරීමත් සමග එයට මෞලයට (mol−1) යන ඒකකය ලැබින.[11] එසේ වුවත් ද්රව්ය ප්රමාණය මැනීමට ඇවගාඩ්රෝ නියතයට වඩා මෞලය භාවිතා කරනු ලැබේ. මෙම අගය රාත්තල් මෞල (lb-mol) හෝ අවුන්ස මෞල (oz-mol) ලෙස ද අර්ථ දැක්විය හැක.
NA = 2.73159757(14)×1026 (lb-mol)−1 = 1.707248479(85)×1025 (oz-mol)−1
විද්යාවේ භාවිතයන්
සංස්කරණයඇවගාඩ්රෝ නියතය ඉතා කුඩා පරමාණුක අගයන් හා මෞලික අගයන් සම්බන්ධ කරණ ගුණාකාරය (නියතය) ලෙස භාවිතා කරනු ලබයි. යම් යම් වෙනත් භෞතික නියත යුගලයන් අතර සම්බන්ධතාවයන් ඉදිරිපත් කිරීමට ඇවගාඩ්රෝ නියතය භාවිතා වේ. උදාහරණ ලෙස වායු නියතය “R“ හා බොල්ට්ස්මාන් නියතය kB අතර සම්බන්ධතාවය,
සහ ෆැරඩේ නියතය F හා ඉලෙක්ට්රොනික ආරෝපණය e අතර සම්බන්ධය,
දැක්විය හැක. පරමාණුක ඒකකය u, ගොඩනැගීම සදහා ද ඇවගාඩ්රෝ නියතය භාවිතා වේ.
මෙහි Mu යනු මෞලික ස්කන්ධ නියතය වේ.
මිනුම්
සංස්කරණයකූලෝමිතිය
සංස්කරණයඇවගාඩ්රෝ නියතයෙහි අගය සෙවිමේ පැරණිම නිවැරදි ක්රමය කූලෝමිතිය මත පදනම් විය. ෆැරඩේ නියතය F, එනම් ඉලෙක්ට්රෝන මෞලයක ආරෝපණය ගෙන එය ඉලෙක්ට්රෝනයක ආරෝපණයෙන් බෙදීම එම ඇවගාඩ්රෝ නියතය සෙවිමේ මූල ධර්මය යි.
බවර්ස් සහ ඩාවිස් විසින් NIST,[12] හිදී කරන ලද ශ්රේෂ්ඨ පරික්ෂණයේදී හා විද්යුත් විච්ඡේදන කෝෂය තුල ඇනෝඩයෙන් ඉවතට සිල්ව ලෝහය දියවීම මත පදනම්ව ෆැරඩේ නියතය ගණනය කල හැක. මෙහිදී යම් කිසි t කාලයක් තුල නියත ' I ' ධාරාවක් ලබා දීමේදී සිල්ව ලෝහයෙන් හානි වූ ස්කන්ධය m නම් සහ Ar යනු සිල්ව ලෝහයේ පරමාණුක ස්කන්ධය නම්, ෆැරඩේ නියතය:
සමීකරණයෙන් ලැබේ. NIST විද්යාඥයන් විසින් ඇනෝඩයෙන් හානි වූ සිල්ව ස්කන්ධය යාන්ත්රික ක්රමවේදයකින් හා සිල්ව ලෝහයේ සාමාන්ය පරමාණුක ස්කන්ධය, ස්කන්ධ භෙදනය (සමස්ථානික විශ්ලේෂණය) මගින් මැන ගන්නා ලදී. ඒ අනුව අනුරූපී ඇඩගාඩ්රෝ නියතය 6.0221449(78)×1023 mol−1 විට ෆැරඩේ නියතයෙහි අගය F90 = 96485.39(13) C/mol වේ. මෙහි අගයන් දෙකෙහිම 1.3 ×10−6 ක සාපේක්ෂ සම්මත අවිනිශ්චිතතාවයක් පවති.
ඉලෙක්ට්රෝන ස්කන්ධ මානය
සංස්කරණයවිද්යාව හා තාක්ෂණය සදහා වු දත්ත කමිටුව ( CODATA) විසින් අන්තර්ජාතික භාවිතය උදෙසා භෞතික නියතයන්ගේ අගයන් ප්රකාශයට පත් කරනු ලබයි. ඔවුන් ඇවගාඩ්රෝ නියතය[13] ඉලෙක්ට්රෝනමවුලයක ස්කන්ධය Ar(e)Mu ඉලෙක්ට්රෝනයක නිශ්චල ස්කන්ධයට me දරන අනුපාතය ලෙස තහවරු කරන ලදී.
මෙහි ඉලෙක්ට්රෝනයක සාපේක්ෂ පරමාණුක ස්කන්ධය, Ar(e), කෙලින්ම ලබාගත් අගයක් වන අතර මවුලික ස්කන්ධ නියතය, , Mu, අන්තර්ජාතික ඒකක පද්ධතියේ අනුමත අගය වේ. නමුත් ඉලෙක්ට්රෝනයක නිශ්චල ස්කන්ධය ගණනය කිරීම සදහා වෙනත් නියතයන් ද භාවිතා කරනු ලබයි. [13]
පහත දක්වා ඇත්තේ 2006 CODATA අගයන්,[14] වේ. ඇවගාඩ්රෝ සංඛ්යාව නිවැරදිව ගණනය කිරීමෙදී වඩා සීමාකාරී සාධකය වන්නේ ප්ලාන්ක් නියතය හි අවිනිශ්චිත භාවයයි. අනෙක් නියතයන්ගේ අගයන් වඩාත් නිවැරදිව දැනගත් අගයන්ය.
Constant | Symbol | 2006 CODATA value | Relative standard uncertainty | Correlation coefficient with NA |
---|---|---|---|---|
Electron relative atomic mass (ඉලෙක්ට්රෝනයක සාපේක්ෂ පරමාණුක ස්කන්ධය) | Ar(e) | 5.485 799 0943(23)×10–4 | 4.2×10–10 | 0.0082 |
Molar mass constant(මවුලික ස්කන්ධ නියතය) | Mu | 0.001 kg/mol | defined | — |
Rydberg constant(රිඩ්බර්ග් නියතය) | R∞ | 10 973 731.568 527(73) m−1 | 6.6×10–12 | 0.0000 |
Planck constant(ප්ලාන්ක් නියතය) | h | 6.626 068 96(33)×10–34 Js | 5.0×10–8 | −0.9996 |
Speed of light(ආලෝකයේ වේගය) | c | 299 792 458 m/s | defined | — |
Fine structure constant(සියුම් ව්යුහ නියතය) | α | 7.297 352 5376(50)×10–3 | 6.8×10–10 | 0.0269 |
Avogadro constant (ඇවගාඩ්රෝ නියතය) | NA | 6.022 141 79(30)×1023 mol−1 | 5.0×10–8 | 1 |
X-කිරණ ස්ඵටික ඝනත්ව (XRCD) ක්රමය
සංස්කරණයX-කිරණ ස්ඵටික විද්යාව යනු ඇවගාඩ්රෝ නියතය තීරණය කිරිමේ නවතම ක්රමවේදයකි. මෙහිදී සිදුකරනු ලබන්නේ මෞලික පරිමාව, Vm, පරමාණුක පරිමාවෙන්Vatom බෙදීම මගින් ඇවගාඩ්රෝ නියතය නිර්ණය කිරීමයි.
- , මෙහි n යනු ඒකක සෛල පරිමාවකVcell ඇති පරමාණු සංඛ්යාවයි .
සිලිකන් ඒකක සෛලයක්, පරමාණු 8 ක් ඝනකයක ආකාරයෙන් සම්බන්ධවීමෙන් සෑදී ඇති අතර එහි එක් පැත්තක දිග a මැන ගැනීමෙන් ඒකක සෛල පරිමාවVcell සොයාගනු ලැබේ.[15]
ප්රායෝගිකව, මෙම අගය සොයාගනු ලබන්නේ මිලර් දර්ශකය(Miller indices{220} ) හෙවත් තල අතර පරතරය d220(Si) මගින් වන අතර එහි අගය a/√8 ට සමාන වේ. d220(Si) හි 2006 CODATA අගය 192.0155762(50) pm වන අතර අනුරූපී ඒකක සෛල පරිමාව 1.60193304(13)×10−28 m3 විට 2.8×10−8 ක සාපේක්ෂ අවිනිශ්චිතතාවයක් පවති.
Vm ගණනය කිරීමේදී සිලිකන්හි සමස්ථානික මිශ්ර වී ඇති අනුපාතය සැලකිල්ලට ගත යුතුය. සිලිකන් වල ස්ථිර සමස්ථානික තුනක් (28Si, 29Si, 30Si) පවතින අතර ඒවායේ අනුපාතයන්ගේ ස්වාභාවික විචලනය අනෙකුත් මිනුම් වල අවිනිශ්චිතතාවයට වඩා වැඩි වේ. ස්ඵටික නියැදියක සිල්වර් පරමාණුක ස්කන්ධය Ar ගණනය කිරිමට එම න්යෂ්ටීන් තුනෙහි සාපේක්ෂ පරමාණුක ස්කන්ධයන් උපරිම නිරවද්යතාවයකින් ලබා ගත යුතුය. එසේ ලබාගන්නා අගයත්, නියැදියේ පරමාණුක ඝනත්වයත් ρ භාවිතයෙන් මෞලික පරිමාව Vmගණනය කල හැක.
මෙහි Mu යනු මෞලික ස්කන්ධ නියතය වේ. සිලිකන් වල මෞල පරිමාව(Vm) හි 2006 CODATA අගය 12.058 8349(11) cm3mol−1, වන අතර සාපේක්ෂ සම්මත අවිනිශ්චිතතාවය 9.1×10−8වේ.[16]
2006 CODATA නිර්දේශිත අගය අනුව, X-කිරණ ස්ඵටික ඝනත්ව (XRCD) ක්රමයෙන් ලබාගන්නා ඇවගාඩ්රෝ නියතයෙහි සාපේක්ෂ අවිනිශ්චිතතාවය 1.2×10−7, වන අතර එය ඉලෙක්ට්රෝන ස්කන්ධ ක්රමයෙන් ලබා ගන්නා අගය මෙන් දෙක හමාරක වැඩි වීමකි.
අන්තර්ජාතින ඇවගාඩ්රෝ සංවිධානය
සංස්කරණයඅන්තර්ජාතින ඇවගාඩ්රෝ සංවිධානය(The International Avogadro Coordination (IAC)), නැතිනම් “ඇවගාඩ්රෝ ව්යාපෘතිය" යනු ඇවගාඩ්රෝ නියතය X-කිරණ ස්ඵටික ඝනත්ව ක්රමය මගින් 2×10−8ක හෝ ඊට අඩු සාපේක්ෂ අවිනිශ්චිතතාවයකින් මැනගැනීම උදෙසා 1990 ගණන්වල මුල් අවදියේ විවිධ රටවල මානවේදී ආයතන අතර ඇතිවූ සහයෝගීතාවයකි.[17] මෙම ව්යාපෘතිය, භෞතික නියතයන් භාවිතයෙන් කිලෝග්රෑමය අර්ථදැක්වීම ( අන්තර්ජාතික කිලෝග්රෑමයේ ප්රතිරූපකයට අමතරව) සහ ප්ලාන්ක් නියතය වොට් තුලාව මගින් මැනීම ඌනපූරණය සදහා ගත් පරිශ්රමයේ කොටසකි.[18][19]නව අන්තර්ජාතික ඒකක පද්ධතිය (International System of Units) (SI) අර්ථදැක්වීමට අනුව ඇවගාඩ්රෝ නියතයේ මිනුමක් වක්රාකාරව ප්ලාන්ක් නියතයෙහි මිනුමක් ද වේ.
මේ මිනුම සඳහා ඉතාමත් ඔපදැමූ කිලෝග්රෑමයක් බර සිලිකන් ගෝලයක් භාවිත කරයි. එය පහසුවෙන් ප්රමාණය මැනගැනීමටත් (1 කි.ග්රෑ. බැවින් ඝනත්වය ඒනයින් ලබාගතහැක ) එහි මතුපිට බඳන ඔක්සයිඩ ප්රමානය අවම කරගැනීමටත් (හොදින් ඔපදැමු බැවින්) උපතාර වේ. ස්භාවික සමස්ථානික අනුපාතයෙන් යුත් සිලිකන් ගෝලයෙන් ගත් පළමු මිනුම 3.1×10−7ක සාපේක්ෂ අවිනිශ්චිතතාවයෙන් යුක්ත වේ.[20][21][22] එම මුල් අගයන් වොට් තුලාව මගින් ලබාගත් ප්ලාන්ක් නියතය සමඟ ද නොගැළපෙන නමුත් විෂමතා ප්රභවය දන්නා බව සලකයි.[19]
මනින ලද විශ්කම්භයන්ගේ 0.3 nm ක විචලනයක් ඇති අතර, ස්කන්ධයේද 3 µg අවිනිශ්චිතතාවයක් ඇත. මෙම නිර්ණයන්ගේ සම්පූර්ණ ප්රතිඵලය 2010 අවසානයේ බලාපොරොත්තු විය.[23] ඔවුගේ පර්යේෂණ ප්රතිඵල සාරාංශය 2011 ජනවාරී මස ප්රකාශයට පත්කල අතර, අන්තර්ජාතික ඇවගාඩ්රෝ සංවිධානයට අනුව ඇවගාඩ්රෝ නියතයෙහි අගය 6.02214078(18)×1023 mol−1 වේ.[24]
මූලාශ්රය
සංස්කරණයයොමුව
සංස්කරණය- ^ Mohr, Peter J. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006". Rev. Mod. Phys. 80 (2): 633–730. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) Direct link to value. - ^ Lua දෝෂය in Module:Citation/CS1/Utilities at line 82: bad argument #1 to 'message.newRawMessage' (string expected, got nil).
- ^ Lua දෝෂය in Module:Citation/CS1/Utilities at line 82: bad argument #1 to 'message.newRawMessage' (string expected, got nil).
- ^ International Bureau of Weights and Measures (2006), The International System of Units (SI) (8th ed.), pp. 114–15, , http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
- ^ Avogadro constant. 2010 CODATA recommended values. NIST
- ^ ඇවගාඩ්රෝ, ඇමඩෝ (1811). "Essai d'une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons". Journal de Physique. 73: 58–76. English translation.
- ^ a b Perrin, Jean (1909). "Mouvement brownien et réalité moléculaire". en:Annales de Chimie et de Physique, 8e Série. 18: 1–114.
{{cite journal}}
: CS1 maint: postscript (link) Extract in English, translation by Frederick Soddy. - ^ Oseen, C.W. (December 10, 1926). Presentation Speech for the 1926 Nobel Prize in Physics.
- ^ NIST Introduction to physical constants
- ^ Resolution 3, 14th en:General Conference of Weights and Measures (CGPM), 1971.
- ^ de Bièvre, P. (1992). "'Atomic Weight'—The Name, Its History, Definition, and Units" (PDF). Pure Appl. Chem. 64 (10): 1535–43. doi:10.1351/pac199264101535.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ This account is based on the review in Mohr, Peter J. (1999). "CODATA recommended values of the fundamental physical constants: 1998". J. Phys. Chem. Ref. Data. 28 (6): 1713–1852. doi:10.1103/RevModPhys.72.351.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b Mohr, Peter J. (2005). "CODATA recommended values of the fundamental physical constants: 2002". Rev. Mod. Phys. 77 (1): 1–107. Bibcode:2005RvMP...77....1M. doi:10.1103/RevModPhys.77.1.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Mohr, Peter J. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006". Rev. Mod. Phys. 80 (2): 633–730. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) Direct link to value. - ^ Mineralogy Database (2000–2005). "Unit Cell Formula". සම්ප්රවේශය 2007-12-09.
{{cite web}}
: CS1 maint: date format (link) - ^ Mohr, Peter J. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006". Rev. Mod. Phys. 80 (2): 633–730. Bibcode:2008RvMP...80..633M. doi:10.1103/RevModPhys.80.633.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) Direct link to value. - ^ "ඇවගාඩ්රෝ ව්යාපෘතිය(Avogadro Project)". ජාතික භෞතීය රසායනාගාරය (National Physical Laboratory). සම්ප්රවේශය 2010-08-19.
- ^ Leonard, B. P. (2007). "On the role of the Avogadro constant in redefining SI units for mass and amount of substance". Metrologia. 44 (1): 82–86. Bibcode:2007Metro..44...82L. doi:10.1088/0026-1394/44/1/012.
- ^ a b Jabbour, Zeina J. (2009). "Getting Closer to Redefining The Kilogram". Weighing & Measurement Magazine (October): 24–26.
- ^ Becker, Peter (2003). "Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal". Metrologia. 40 (6): 366–75. Bibcode:2003Metro..40..366B. doi:10.1088/0026-1394/40/6/008.
- ^ Fujii, K.; et al. (2005). "Present State of the Avogadro Constant Determination From Silicon Crystals With Natural Isotopic Compositions". IEEE Trans. Instrum. Meas. 54 (2): 854–59. doi:10.1109/TIM.2004.843101.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - ^ Williams, E. R. (2007). "Toward the SI System Based on Fundamental Constants: Weighing the Electron". IEEE Trans. Instrum. Meas. 56 (2): 646–50. doi:10.1109/TIM.2007.890591.
- ^ "Report of the 11th meeting of the Consultative Committee for Mass and Related Quantities (CCM)" (PDF). International Bureau of Weights and Measures. 2008. p. 17.
- ^ Andreas, B.; et al. (2011). "An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal". Phys. Rev. Lett. 106 (3): 030801 (4 pages). arXiv:1010.2317. Bibcode:2011PhRvL.106c0801A. doi:10.1103/PhysRevLett.106.030801.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)
භාහිර සබැඳි
සංස්කරණය- 1996 definition of the Avogadro constant සංරක්ෂණය කළ පිටපත 2009-09-29 at the Wayback Machine from the en:IUPAC en:Compendium of Chemical Terminology ("Gold Book")
- Some Notes on Avogadro's Number, 6.022×1023 සංරක්ෂණය කළ පිටපත 2009-06-01 at the Wayback Machine (historical notes)
- An Exact Value for Avogadro's Number සංරක්ෂණය කළ පිටපත 2011-08-13 at the Wayback Machine – en:American Scientist
- Avogadro and molar Planck constants for the redefinition of the kilogram සංරක්ෂණය කළ පිටපත 2011-07-17 at the Wayback Machine