∫ sin x d x = − cos x + c {\displaystyle \int \sin x\;dx=-\cos x+c}
∫ cos x d x = sin x + c {\displaystyle \int \cos x\;dx=\sin x+c}
∫ sec 2 x d x = tan x + c {\displaystyle \int \sec ^{2}x\;dx=\tan x+c}
∫ csc 2 x d x = − cot x + c {\displaystyle \int \csc ^{2}x\;dx=-\cot x+c}
∫ cot x csc x d x = − csc x + c {\displaystyle \int \cot x\csc x\;dx=-\csc x+c}
∫ sec x tan x d x = sec x + c {\displaystyle \int \sec x\tan x\;dx=\sec x+c}
♦ මෙහි යනු c අභිමත නියතයකි.