"සෞර ග්‍රහ මණ්ඩලයෙහි නිර්මාණය සහ පරිණාමය" හි සංශෝධන අතර වෙනස්කම්

Content deleted Content added
No edit summary
සංස්කරණය
1 පේළිය:
සෞරග්‍රහ මණ්ඩලය නිර්මාණය වීම හා පරිණාමය
ඔරියන් නිහාරිකාවේ ප්‍රාථමික ග්‍රහ තැටිවල හබල් දුරේක්ෂයෙන් ගත් ඡායාරූප ආලෝක වර්ෂ‍යක් පළල මෙය අපගේ හිරු නිර්මාණය වූ ප්‍රිමෝඩියුල් නිහාරිකාවට සමාන වේ.
<!--ඔරායන් නිහාරිකාවේ ආලෝක වර්ෂ‍යක් පළල ප්‍රාථමික ග්‍රහ තැටිවල හබල් දුරේක්ෂයෙන් ගත් ඡායාරූප අධ්‍යයනය කිරීමෙන් එය අපගේ හිරු නිර්මාණය වූ ප්‍රිමෝඩියුල් නිහාරිකාවට සමාන යයි විද්‍යාඥයන් විශ්වාස කරයි. -->
සෞරග්‍රහ මණ්ඩලය නිර්මාණය වී ඇතැයි සැලකෙන්නේ නිහාරිකා කල්පිතයට අනුවය. එමඟින් කියවෙන්නේ වසර බිලියන 4.6කට පෙර සුවිසල් අණුක වළාකුලක් ගුරුත්වාකර්ෂණ බිඳ වැටීමකට ලක් වීමෙන් සෞරග්‍රහ මණ්ඩලය ඇති වූ බවයි. මෙම වළාව ආලෝක වර්ෂ කිහිපයක් විශාල විය යුතු අතර තාරකා ගණනකට ජීවය ලබා දි තිබිය යුතුය. පැරණි උල්කා අධ්‍යයනයේ දී අති විශාල පිපිරෙන තරුවක මධ්‍යයේ පමණක් නිර්මාණය හැකි මූලද්‍රව්‍ය පිළිබඳ ඉඟි හමුවී ඇත. එයින් සූර්යයා තාරකා පොකුරක් තුළ නිර්මාණය වූ බව හඟවන අතර එම ප්‍රදේශය අසල සුපර්නෝවා පිපිරීම් කිහිපයක් ද සිදු වී ඇත. මෙම සුපර්නෝවා මඟින් ඇතිවන කම්පන තරංගය අසල ඇති නිහාරිකාවේ අධි ඝනත්ව කලාප ඇති කර ගුරුත්වජ බලවලට අභ්‍යන්තර වායු පීඩනය මැඩ පැවැත්වීමට ඉඩ සලස්වා බිඳ වැටීම සිදු කරවයි. එලෙස සූර්යයා නිර්මාණය වූ බව සැලකේ.
සෞරග්‍රහ මණ්ඩලයේ වැඩි දුරට ඇති සමස්ථානික
සමස්ථානිකය මිලියනයකට න්‍යෂ්ටි
හයිඩ්‍රජන්-1 705,700
හයිඩ්‍රජන් -2 23
හීලියම්-4 275,200
හීලියම්-3 35
ඔක්සිජන්-16 5,920
කාබන්-12 3,032
කාබන්-13 37
නියෝන්-20 1,548
නියෝන්-22 208
යකඩ-56 1,169
යකඩ-54 72
යකඩ -57 28
නයිට්‍රජන්-14 1,105
සිලිකන්-28 653
සිලිකන්-29 34
සිලිකන්-30 23
මැග්නීසියම්-24 513
මැග්නීසියම්-26 79
මැග්නීසියම්-25 69
සල්ෆර්-32 396
ආර්ගන්-36 77
කැල්සියම්-40 60
ඇලුමිනියම්-27 58
නිකල්-58 49
සෝඩියම්-23 33
 
==නෙබියුලා අවස්ථාව==
සෞරග්‍රහ මණ්ඩලය බවට පත්වීටම තිබූ ප්‍රදේශය හැඳින්‍වූයේ පූර්ව සූර්ය නිහාරිකාව ලෙසය. 7000ත් 200000AU ත් අතර පරිධියකින් යුක්ත වූ එය ස්කන්ධයෙන් සූර්යයාට වඩා මඳක් ඉදිරියෙන් සිටී.(සූර්ය ස්කන්ධ 0.1 හා 0.001 අතර) නිහාරිකාව බිඳ වැටීමත් සමඟ, කෝණික ගම්‍යතා සංස්ථිතිය නිසා එය වේගයෙන් භ්‍රමණය වන්නට විය. නිහාරිකාව තුළ සංඝනීකරණය වීමත් සමඟම එය තුළ වූ පරමාණු වැඩිවන සංඛ්‍යතයකින් ගැටීමට පටන් ගැණුනි. වැඩිම ස්කන්ධ ප්‍රමාණයක් එකතු වී ඇති මධ්‍යයය තැටියේ අනෙක් පෙදෙස්වලට වඩා උණුසුම් විය. ගුරුත්වය, වායු පීඩනය, චුම්භක ක්ෂේත්‍රය හා භ්‍රමණය නිහාරිකාව මත ක්‍රියාකර එය භ්‍රමණය වන දළව පරිධිය 200AUවන උණුසුම් මධ්‍යයේ ඝනත්වයෙන් ඉහළ ප්‍රෝටෝ තරුවකින් යුත් ප්‍රාථමික ග්‍රහ තැටියක් බවට පත් විය.
සෞරග්‍රහ මණ්ඩලය නිර්මාණය වී ඇතැයි සැලකෙන නිහාරිකා කල්පිතයට අනුව වසර බිලියන 4.6කට පෙර සුවිසල් වායු - ධූලි වළාකුලක් ගුරුත්වාකර්ෂණ බිඳ වැටීමකට ලක් වීමෙන් සෞරග්‍රහ මණ්ඩලය ඇති වූ බවයි.
වයසින් අඩු, පරිණාමයේ මෙම අවස්ථාවේ දී හිරුට සාමාන යැයි විශ්වාස කෙරෙන පූර්ව විලයන සූර්ය ස්කන්ධ තාරකා, T ටෝරි තාරකා පිළිබඳ අධ්‍යයනයන් පෙන්වන්නේ එම තාරකා නිතරම පූර්ව ග්‍රහ පදාර්ථවලින් යුත් තැටි සමඟ ඇති බවයි. මෙම තැටි AU සිය ගණනක් දක්වා විස්තීරණය වන අතර එළඹෙන උපරිම උෂ්ණත්වය කෙල්වින් දහසක් පමණ වේ.
 
වසර මිලියන 50 ක් තුළ, බිඳ වැටෙන නිහාරිකාවෙහි කේන්ද්‍රයේ ඇති හයිඩ්‍රජන්හි ඝනත්වය හා පීඩනය ප්‍රාථමික සූර්යයාට තාප න්‍යෂ්ටික විලයන ආරම්භ කිරීමට ප්‍රමාණවත් තරම් ප්‍රමාණයකට වැඩි වෙයි. ජල ස්ථිතික තුලළ්‍යතාව ලැබෙන තෙක් උෂ්ණත්වය, ප්‍රතික්‍රියා සීඝ්‍රතාව, පීඩනය හා ඝනත්වය ඉහල නගී. මෙවිට තාප ශක්තිය ගුරුත්වජ විකර්ෂණයට එරෙහිව ක්‍රියාකිරීමට ද පටන් ගනී. මෙම අවස්ථාවේ දී හිරු පූර්ණව වැඩුණු ප්‍රධාන අනුක්‍රම තාරකාව බවට පත්වේ.
මෙම වළාව ආලෝක වර්ෂ කිහිපයක් විශාල විය යුතු අතර තාරකා ගණනකට ජීවය ලබා දි තිබිය යුතුය. පැරණි උල්කා අධ්‍යයනයේ දී අති විශාල පිපිරෙන තරුවක මධ්‍යයේ පමණක් නිර්මාණය හැකි මූලද්‍රව්‍ය පිළිබඳ ඉඟි හමුවී ඇත. එයින් සූර්යයා තාරකා පොකුරක් තුළ නිර්මාණය වූ බව හඟවන අතර එම ප්‍රදේශය අසල සුපර්නෝවා පිපිරීම් කිහිපයක් ද සිදු වී ඇත. මෙම සුපර්නෝවා මඟින් ඇතිවන කම්පන තරංගය අසල ඇති නිහාරිකාවේ අධි ඝනත්ව කලාප ඇති කර ගුරුත්වජ බලවලට අභ්‍යන්තර වායු පීඩනය මැඩ පැවැත්වීමට ඉඩ සලස්වා බිඳ වැටීම සිදු කරවයි. එලෙස සූර්යයා නිර්මාණය වූ බව සැලකේ.
ඉතිරිව පවතින වායු වලාකුළු හා දූවිලි (සූර්යා නිහාරිකාව) මඟින් විවිධ ග්‍රහලෝක නිර්මාණය විය. ඒවා වැඩීම (accretion) මඟින නිර්මාණය වූ බවට විශ්වාස කෙරේ. මධ්‍ය ප්‍රාථමික තාරකාව වටා කක්ෂවල දූවිලි අංශු ලෙස ග්‍රහලෝක ආරම්භ විය. ඉන්පසු මේවා සෘජු ගැටීම් හරහා පරිධිය මීටර් එකක් හා දහයක් අතර අගයක් ගන්නා තැටියක් බවට පත්වේ. ඉන්පසු තව තවත් ගැටී ප්‍රමාණයෙන් 5km පමණ වන විශාල වස්තු (ප්ලැනටෙසිමල්ස්) බවට පත්වේ. ඉන්පසු තව තවත් ගැටීම් තුළින් දළ වශයෙන් වසරකට 15cm බැඟින් ඊළඟ වසර මිලියන ගණන පුරාවට විශාල වීම සිදුවේ.
 
ඇතුලු සෞරග්‍රහ මණ්ඩලය ජලය හා මීතේන් වැනි වාෂ්පශීලී අණුවලට සංඝනීකරණය විය නොහැකි තරම් උණුසුම් නිසා එහි නිර්මාණය වන ප්ලැනටෙසිමල්ස් සාපේක්ෂව කුඩා වන අතර (තැටියේ ස්කන්ධයෙන් 0.6% ක් පමණ) සිලිකේට හා ලෝහ වැනි ඉහල ද්‍රවාංක සහිත සංයෝගවලින් විශාල ලෙස සමන්විත වේ. මෙම දෘඩ වස්තු කාලයක් සමඟම භෞමික ග්‍රහලෝක බවට පත්වේ. තවදුරටත් විමසා බලන කළ බ්‍රහස්පතීගේ ගුරුත්වාකර්ෂණ බලපෑම් නිසා ඒ අවට වූ ප්‍රාථමික ග්‍රහ වස්තුවලට එකතු වීමට නොහැකි විය. ග්‍රාහක වළල්ල නිර්මාණය වූයේ එලෙසය.වඩා වාෂ්පශීලී අයිස් සංයෝග ඝන ආකාරයෙන් පැවතිය හැකි වූ තුහින රේඛාවට පිටින් වූ ප්‍රදේශයෙහි වූ බ්‍රහස්පති හා සෙනසුරු වායු දැවැන්තයන් විය. යුරේනස් හා නෙප්චූන් අඩු පදාර්ථ ප්‍රමාණයක් අල්වා ගත් අතර අයිස් දැවැන්තයන් ලෙස හඳුන්වයි. එයට හේතුව ඔවුන්ගේ හර වැඩි වශයෙන් අයිස්වලින් (හයිඩ්‍රජන් සංයෝග) නිර්මාණය වී ඇතැයි විශ්වාස කිරීමය.
දැනට සෞරග්‍රහ මණ්ඩලයේ වැඩිපුර ඇති සමස්ථානික එලෙසින්ම පූර්වයේ සූර්ය ග්‍රහ මණ්ඩලය තැනීමට දායක වූ නිහාරිකාවේද තිබෙන්නට ඇතැයි සැලකේ. ඒවා නම්,
අලුත් සූර්යයා ශක්ති නිපදවීම ආරම්භ කළ විට සූර්ය සුළං (පහත බලන්න) ප්‍රාථමික ග්‍රහ තැටියේ වායු හා දූවිලි තාරකාන්තර විශ්වයට පා කර හරින අතර ග්‍රහලෝකවල වර්ධනය නිමා කරයි. T ටෝරි තාරකාවලට, වඩා පැරණි ස්ථායී තාරකාවලට වඩා වැඩි ශක්තිමත් තාරකා සුළඟක් පවතී.
 
{| class="wikitable" border="1"
අප හිරුගේ අනාගත පරිණාමනය පිළිබඳ කලාකරුවන්ගේ සංකල්පනය. වම : ප්‍රධාන අනුක්‍රමය, මැද: රතු දැවැන්තයා, දකුණ : සුදු කුඩා වස්තුව
! මූලද්‍රව්‍ය!!මිලියනයකට න්‍යෂ්ටි
වර්තමානයේ අපි දන්නා පරිදි හිරු ප්‍රධාන අනුක්‍රමණයෙන් ඉවත් වනතෙක් සෞරග්‍රහ මණ්ඩලය පවතිනු ඇත. හයිඩ්‍රජන් ඉන්ධන දහනය හරහා සූර්යයා දහනය වන විට එය ඉතිරි ඉන්ධන දහනය කිරීම සඳහා තවත් උණුසුම් වේ. එම නිසා එය තවත් වේගයෙන් දහනය සිදු කරයි. මෙහි ප්‍රතිඵලයක් ලෙස සෑම වසර බිලියන 1.1 ටම දළව 10% කින් හිරුගේ දීප්තිය වැඩිවේ.
|-
මෙතැන් සිට වසර බිලියන 7.6 ගතවු කළ, හයිඩ්‍රජන් විලයනය අඩු ඝනත්ව උඩ වියන්වල සිදුවීමට තරම් සූර්ය හරය උණුසුම් වනු ඇත. මෙය හිරු දැන් පවතින පරිධිය මෙන් 260 වාරයක් පමණ දක්වා විශාල වීමට හේතු වේ. හිරු රතු දැවැන්තයා බවට පත් වන්නේ එලෙසය. මෙම අවස්ථාවේ දී එහි විශාලම ලෙස වැඩි වූ පෘෂ්ටික වර්ගඵලය නිසා සූර්යයා සීතල වීමට පටන් ගනී.
| හයිඩ්‍රජන්-1 ||705,700
ක්‍රම ක්‍රමයෙන් හිරුගේ බාහිර ස්ථර සුදු පැහැති කුඩා වස්තුවක් ඉතිරි කරමින් නැතිවී යනු ඇත. අසාමාන්‍ය ඝනත්වයකින් යුත් මෙම වස්තුව එහි මුල් ස්කන්ධයෙන් භාගයක් වන අතර ප්‍රමාණයෙන් පෘථිවිය තරම් වේ.
|-
| හයිඩ්‍රජන් -2 ||23
|-
| හීලියම්-4 ||275,200
|-
| හීලියම්-3 ||35
|-
| ඔක්සිජන්-16 ||5,920
|-
| කාබන්-12 ||3,032
|-
| කාබන්-13 ||37
|-
| නියෝන්-20 ||1,548
|-
| නියෝන්-22 ||208
|-
| යකඩ-56 ||1,169
|-
| යකඩ-54 ||72
|-
| යකඩ -57 ||28
|-
| නයිට්‍රජන්-14 ||1,105
|-
| සිලිකන්-28 ||653
|-
| සිලිකන්-29 ||34
|-
| සිලිකන්-30 ||23
|-
| මැග්නීසියම්-24 ||513
|-
| මැග්නීසියම්-26 ||79
|-
| මැග්නීසියම්-25 ||69
|-
| සල්ෆර්-32 ||396
|-
| ආර්ගන්-36 ||77
|-
| කැල්සියම්-40 ||60
|-
| ඇලුමිනියම්-27 ||58
|-
| නිකල්-58 ||49
|-
| සෝඩියම්-23 ||33
|}
 
==පූර්ව සූර්ය නිහාරිකාව==
සෞරග්‍රහ මණ්ඩලය බවට පත්වීටම තිබූ ප්‍රදේශය හැඳින්‍වූයේ පූර්ව සූර්ය නිහාරිකාව ලෙසය. 7000ත් 200000AU ත් (AU=නක්‍ෂත්‍ර ඒකක, එනම් පොළවේ සිට සූර්යයාට ඇති දුර) අතර පරිධියකින් යුක්ත වූ එය ස්කන්ධයෙන් සූර්යයාට වඩා මඳක් ඉදිරියෙන් සිටී. (සූර්ය ස්කන්ධ 0.1 හා 0.001 අතර ? ). මුලදී මෙය අංශු ඉතා ඇතින් ඈතින් පිහිටා ඇති වළාවක් වන අතර වසර මිලියන ගණනක් ඇවෑමෙන් අංශු එකිනෙක කැටි වූ (ළං ව ඇසිරුණු) ධූලි-වායු වළාවක් ලෙස පෙනෙන්නට විය. මුලදී මෙම ධූලි වලාවට ඉතා කුඩා කෝණික ගම්‍යතාවක් තිබුණි යැයි විශ්වාස කෙරේ. ගුරුත්වය හේතුවෙන් නිහාරිකාව බිඳ වැටීමත් (සංකෝචනය) සමඟ, කෝණික ගම්‍යතා සංස්ථිතිය තුලින් පැහැදිලි කෙරෙන පරිදි එය වේගයෙන් භ්‍රමණය වන්නට විය. මෙවිට නිහාරිකාව ආසන්න වශයෙන් ගෝලයක හැඩයට පත් වූ අතර, (මේ සඳහා අවුරුදු 10,000 - 1,000,000ත් අතර කාලයක් ගතවී ඇත.) කේන්‍ද්‍රාපසාරී බලය හේතුවෙන් ගෝලයේ සමකය ලෙස හැඳින්විය හැකි ප්‍රදේශයේ ඇති ද්‍රව්‍ය පිටතට විහිදී තැටියක් ආකාරයේ හැඩයක් ජනනය විය. මෙය පූර්ව ග්‍රහලෝක තැටිය (proto planetary disk) ලෙස හැඳින්වේ.
 
==පූර්ව පූර්යයා==
[[Image:TTauriStarDrawing.jpg|thumb|left|T Tauri (T ටෝරි) තරුවක් සිය පූර්ව ග්‍රහ තැටිය සමඟ]]
නිහාරිකාව තුළ සංඝනීකරණය වීමත් සමඟම එය තුළ වූ පරමාණු වැඩිවන සංඛ්‍යතයකින් ගැටීමට පටන් ගැණුනි. වැඩිම ස්කන්ධ ප්‍රමාණයක් එකතු වී ඇති මධ්‍යයය තැටියේ අනෙක් පෙදෙස්වලට වඩා උණුසුම් විය. ගුරුත්වය, වායු පීඩනය, චුම්භක ක්ෂේත්‍රය හා භ්‍රමණය නිහාරිකාව මත ක්‍රියාකර එය භ්‍රමණය වන දල වශයෙන් පරිධිය 200AU වන මධ්‍යයේ උණුසුම්, ඝනත්වයෙන් ඉහළ පූර්ව තරුවකින් (proto sun) යුත් ප්‍රාථමික ග්‍රහ තැටියක් බවට පත් විය. වයසින් අඩු, පරිණාමයේ මෙම අවස්ථාවේ දී හිරුට සාමාන යැයි විශ්වාස කෙරෙන පූර්ව විලයන සූර්ය ස්කන්ධ තාරකා, (T ටෝරි තාරකා) පිළිබඳ අධ්‍යයනයන් පෙන්වන්නේ එම තාරකා නිතරම පූර්ව ග්‍රහ පදාර්ථවලින් යුත් තැටි සමඟ ඇති බවයි. මෙම තැටි නක්‍ෂත්‍ර ඒකක සිය ගණනක් දක්වා විස්තීරණය වන අතර එළඹෙන උපරිම උෂ්ණත්වය කෙල්වින් දහසක් පමණ වේ.
 
==ප්‍රධාන අනුක්‍රමයට පිවිසීම==
වසර මිලියන 50 ක් තුළ, බිඳ වැටෙන නිහාරිකාවෙහි කේන්ද්‍රයේ ඇති හයිඩ්‍රජන්හි ඝනත්වය හා පීඩනය ප්‍රාථමික සූර්යයාට තාප න්‍යෂ්ටික විලයන ආරම්භ කිරීමට ප්‍රමාණවත් තරම් ප්‍රමාණයකට වැඩි වෙයි. (එනම් මධ්‍යයේ උෂ්ණත්වය කෙල්වින් අංශක මිලියන එකක් පමණ උෂ්ණත්වයක් හා පීඩනය ප්‍රමාණවත් තරම්.) ද්‍රවස්ථිතික තුල්‍යතාව (hydrostatic equilibrium) ලැබෙන තෙක් උෂ්ණත්වය, ප්‍රතික්‍රියා සීඝ්‍රතාව, පීඩනය හා ඝනත්වය ඉහල නගී. මෙවිට තාප ශක්තිය (විකිරණ පීඩනය - radiation pressure) ගුරුත්වජ ආකර්ෂණයට එරෙහිව ක්‍රියාකිරීමට ද පටන් ගනී. මෙම අවස්ථාවේ දී හිරු පූර්ණව වැඩුණු ප්‍රධාන අනුක්‍රම තාරකාවක් බවට පත්වේ. දැනුදු අප සූර්යයා ප්‍රධාන අනුක්‍රමයේ තරුවක් වන අතර තවත් වසර බිලියන 5-6ක් පමණ ප්‍රධාන අනුක්‍රමයේ පවතිනු ඇත
 
==ග්‍රහලෝක නිර්මාණය==
[[Image:Protoplanetary-disk.jpg|thumb|left|පූර්ව ග්‍රහ තැටි තුළින් ග්‍රහලෝක නිර්මාණය වෙමින්]]
ඉතිරිව පවතින වායු වලාකුළු හා දූවිලි (පූර්ව ග්‍රහ තැටිය) මඟින් විවිධ ග්‍රහලෝක නිර්මාණය විය. ඒවා වැඩීම (accretion) මඟින් නිර්මාණය වූ බවට විශ්වාස කෙරේ. මධ්‍ය ප්‍රාථමික තාරකාව වටා කක්ෂවල දූවිලි අංශු ලෙස ග්‍රහලෝක ආරම්භ විය. ඉන්පසු මේවා සෘජු ගැටීම් හරහා පරිධිය මීටර් එකක් හා දහයක් අතර අගයක් ගන්නා තැටියක් බවට පත්වේ. ඉන්පසු තව තවත් ගැටී ප්‍රමාණයෙන් 5km පමණ වන විශාල වස්තු (ප්ලැනටෙසිමල්ස්) බවට පත්වේ. ඉන්පසු තව තවත් ගැටීම් තුළින් දළ වශයෙන් වසරකට 15cm බැඟින් ඊළඟ වසර මිලියන ගණන පුරාවට විශාල වීම සිදුවේ. ඇතුලු සෞරග්‍රහ මණ්ඩලය ජලය හා මීතේන් වැනි වාෂ්පශීලී අණුවලට සංඝනීකරණය විය නොහැකි තරම් උණුසුම් නිසා එහි නිර්මාණය වන ප්ලැනටෙසිමල්ස් සාපේක්ෂව කුඩා වන අතර (තැටියේ ස්කන්ධයෙන් 0.6% ක් පමණ) සිලිකේට හා ලෝහ වැනි ඉහල ද්‍රවාංක සහිත සංයෝගවලින් විශාල ලෙස සමන්විත වේ. මෙම දෘඩ වස්තු කාලයක් සමඟම භෞමික ග්‍රහලෝක බවට පත්වේ. තවදුරටත් විමසා බලන කළ බ්‍රහස්පතීගේ ගුරුත්වාකර්ෂණ බලපෑම් නිසා ඒ අවට වූ ප්‍රාථමික ග්‍රහ වස්තුවලට එකතු වීමට නොහැකි විය. ග්‍රාහක වළල්ල නිර්මාණය වූයේ එලෙසය.වඩා වාෂ්පශීලී අයිස් සංයෝග ඝන ආකාරයෙන් පැවතිය හැකි වූ තුහින රේඛාවට පිටින් වූ ප්‍රදේශයෙහි වූ බ්‍රහස්පති හා සෙනසුරු වායු දැවැන්තයන් විය. යුරේනස් හා නෙප්චූන් අඩු පදාර්ථ ප්‍රමාණයක් අල්වා ගත් අතර අයිස් දැවැන්තයන් ලෙස හඳුන්වයි. එයට හේතුව ඔවුන්ගේ හර වැඩි වශයෙන් අයිස්වලින් (හයිඩ්‍රජන් සංයෝග) නිර්මාණය වී ඇතැයි විශ්වාස කිරීමය. අලුත් සූර්යයා ශක්ති නිපදවීම ආරම්භ කළ විට සූර්ය සුළං (solar wind) ප්‍රාථමික ග්‍රහ තැටියේ වායු හා දූවිලි තාරකාන්තර විශ්වයට පා කර හරින අතර ග්‍රහලෝකවල වර්ධනය නිමා කරයි. T ටෝරි තාරකාවලට, වඩා පැරණි ස්ථායී තාරකාවලට වඩා වැඩි ශක්තිමත් තාරකා සුළඟක් (stellar wind) පවතී.
 
==සූර්යයාගේ මියයාම==
[[Image:Solar Life Cycle.svg|thumb|left|600px|අප [[සූර්යයා|හිරු]]ගේ අනාගත පරිණාමනය චිත්‍ර ශිල්පියෙකුගේ ඇසින්. වම : ප්‍රධාන අනුක්‍රමය, මැද: [[රතු යෝධ තරු|රතු දැවැන්තයා]], දකුණ : සුදු වාමනයා]]
 
[[Image:The life of Sun-like stars.jpg|thumb|left|හිරුගේ ජීවන චක්‍රය (සිතුවමකි)]]
වර්තමානයේ අපි දන්නා පරිදි හිරු ප්‍රධාන අනුක්‍රමණයෙන් ඉවත් වනතෙක් සෞරග්‍රහ මණ්ඩලය පවතිනු ඇත. හයිඩ්‍රජන් ඉන්ධන දහනය හරහා සූර්යයා දහනය වන විට එය ඉතිරි ඉන්ධන දහනය කිරීම සඳහා තවත් උණුසුම් වේ. එම නිසා එය තවත් වේගයෙන් දහනය සිදු කරයි. මෙහි ප්‍රතිඵලයක් ලෙස සෑම වසර බිලියන 1.1 ටම දළව 10% කින් හිරුගේ දීප්තිය වැඩිවේ. මෙතැන් සිට වසර බිලියන 7.6 ගතවු කළ, හයිඩ්‍රජන් විලයනය අඩු ඝනත්ව උඩ වියන්වල සිදුවීමට තරම් සූර්ය හරය උණුසුම් වනු ඇත. මෙය හිරු දැන් පවතින පරිධිය මෙන් 260 වාරයක් පමණ දක්වා විශාල වීමට හේතු වේ. හිරු [[රතු යෝධ තරු|රතු දැවැන්තයා]] බවට පත් වන්නේ එලෙසය. මෙම අවස්ථාවේ දී එහි විශාලම ලෙස වැඩි වූ පෘෂ්ටික වර්ගඵලය නිසා සූර්යයා සීතල වීමට පටන් ගනී. ක්‍රම ක්‍රමයෙන් හිරුගේ බාහිර ස්ථර සුදු පැහැති කුඩා වස්තුවක් ඉතිරි කරමින් නැතිවී යනු ඇත. අසාමාන්‍ය ඝනත්වයකින් යුත් මෙම වස්තුව එහි මුල් ස්කන්ධයෙන් භාගයක් වන අතර ප්‍රමාණයෙන් පෘථිවිය තරම් වේ.