"බහු පදය" හි සංශෝධන අතර වෙනස්කම්

linked to English page
No edit summary
(linked to English page)
ගණිතයේ දී බහුපදයක් යනු, [[ආකලනය]], [[ව්‍යාකලනය]], [[ගුණනය]] හා නියත ධන පූර්ණ සංඛ්‍යා දර්ශක යොදා ගෙන විචල්‍ය හා නියත එකක් හෝ වැඩි ගණනකින් සැදී ඇති ප්‍රකාශනයකි.
{{mergewith|බහු පදය}}
 
උදාහරණයක් ලෙස ,
සෑම බහු පදයක්ම බහු පද ශ්‍රිතයකට අනුරූප වෙයි. එහි දී f(x) බහු පදයට සමානව සකසනු ලැබේ. බහු පද සමීකරණවලදී බහු පදය ශුන්‍යයට සමානව සකසනු ලැබේ. සමීකරණයේ විසඳුම් බහු පදයේ මූල ලෙස හඳුන්වන අතර ඒවා ශ්‍රිතයේ ශුන්‍යයන් හා එහි ප්‍රස්ථාරයේ x - අන්තඃඛණ්ඩ වේ. x = a බහු පදයක මූලයක් නම් (x - a) යන්න බහු පදයේ මූලයක් වේ.
* [[ගොනුව:Polynominal para a1.JPG]] බහු පදයක් වන නමුත්
* [[ගොනුව:Polynominal para a2.JPG]] එසේ ‍නොවේ.
 
එයට හේතුව එහි විචල්‍යයකින් බෙදීමක් ඇතුළත්වීම හා ධන පූර්ණ සංඛ්‍යාවක් ‍නොවන දර්ශකයක් ඇතුළත් වීමයි. බහු පද, වීජ ගණිතයේ වඩාත්ම වැදගත් සංකල්පවලින් එකක් වන අතර ගණිත‍ය හා විද්‍යාව පුරාවටම ද එය වැදගත් වේ. ඒවා මූලික ප්‍රශ්නවල සිට විද්‍යාවේ සංකීර්ණ ගැටළු දක්වා පුළුල් පරාසයක ගැටලු ආවරණ වන බහු පද සමීකරණ ගොඩ නැංවීමට භාවිතා වේ. සරල රසායන විද්‍යාවේ හා භෞතික විද්‍යාවේ සිට ආර්ථික විද්‍යාව දක්වා පරාස ගත වන පසුබිමක දක්නට ලැබෙන බහු පද ශ්‍රිත අර්ථ දැක්වීමට ඒවා යොදා ගනී. තවද කලනයේ දී හා සංඛ්‍යාත්මක විශ්ලේෂණයේ දී අනෙකුත් ශ්‍රිත ආසන්න කිරීමට ‍භාවිතා වේ. වීජ ගණිතයේ හා වීජීය ජ්‍යාමිතියේ එක් බලවත් සංකල්පයක් වන බහු පද වළලු තැනීමට ද බහු පද භාවිතා වේ.
[[ගොනුව:Solving polynominal equa para a1.JPG]] වැනි සමහරක් බහු පදවලට තාත්වික මුල නොමැත. නමුත් කෙසේ හෝ පිළිතුරු ගැනීමට අවසර දී ඇති කුලකය සංකීර්ණ සංඛ්‍යා දක්වා විස්තීර්ණ කළ හොත්, සියලු (නියත නොවන) බහු පදවලට අඩුම වශයෙන් එක් ප්‍රභින්න මූලයක් වත් ‍තිබේ. මෙය වීජ ගණිතයේ මූලික ප්‍රමේය යේ ප්‍රතිඵලයකි.
 
බහු පද සම්බන්ධයේදී [[පැස්කල් ත්‍රිකෝණය]] තවත් එක ප්‍රධාන කරුණකි.
මුල ආසන්න කිරීම හා නිරවද්‍යම මුල සෙවීම අතර වෙනසක් තිබේ. දෙවන මාත්‍රයේ බහු පදවල මූල සඳහා වූ සූත්‍රය ඉපැරණි කාලයේ සිට පැවතුනි. (වර්ගජ සමීකරණ බලන්න) 16 වන සියවසේ සිට 4 වන මාත්‍රය දක්වා සූත්‍ර ද භාවිතයට එක් විය. නමුත් 5වන මාත්‍රය සඳහා වූ සූත්‍ර පර්යේෂකයන් මඟ හැර ගියේය. 1824 දි නීල්ස් හේන්ඩ්රික් අබෙල්, මාත්‍රය පහට හෝ වඩා වැඩි බහු පදවල මූල සඳහා එහි සංගුණක ආශ්‍රයෙන් සූත්‍රයක් (අංක ගණිතමය ක්‍රියාවලි හා ආමූල පමණක් අඩංගු) පැවතිය නොහැකි බව ඔප්පු කරන ලදී. (ආබෙල් රෆිනි ප්‍රමේයය බලන්න) මෙම ප්‍රතිඵලය , මූල හා බහු පද අතර සම්බන්ධය විස්තරාත්මකව අධ්‍යයනය කරන ගාලොයිස් සිද්ධාන්තයේ ආරම්භයට මඟ පෑදීය.
 
එක් නොදන්නා රාශියක් ඇති බහු පද සංඛ්‍යාත්මක විසඳීම පරිගණක මඟින් ඩියුරන්ට් - කර්නර් ක්‍රමය හෝ වෙනත් මූල සොයන ඇල්ගොරිතමයක් යොදා ගෙන පහසුවෙන් සිදු කළ හැක. නොදන්නා රාශි කිහිපයකින් යුත් සමීකරණ එක් නොදන්නා රාශියක් ඇති සමීකරණ බවට පත් කරන ආකාරය බච්ඩර්ගර්ගේ ඇල්ගොරිතමය යටතේ සාකච්ඡා වේ. සියලු බහු පද 1වන මාත්‍රයේ වනවිට එය ඒකජ සමීකරණ පද්ධතියක් ලෙස හඳුන්වන අතර එහි දී විශේෂිත ලෙස ගවුසීය ඉවත් කිරීම ඇතුලු විවිධ පරාසයකින් යුත් විසඳුම් ක්‍රම රාශියක් පවතී.
 
[[ප්‍රවර්ගය:ගණිතය]]
රිචඩ් බර්ක්ලෑන්ඩ් හා කාල් මේයර් විසින් ඕනෑම බහු පදයක මුල, බහු විචල අධි ජ්‍යාමිතික ශ්‍රිත අනුසාරයෙන් ප්‍රකාශ කළ හැකි බව පෙන්වා දෙන ලදී. ෆර්ඩිනන්ඩ් වොන් ලින්ඩ්මන් හා හිරෝෂි උමෙමුරා විසින් මූල, ඉලිප්සීය ශ්‍රිත පිළිබඳ සිද්ධාන්තවල ඇති තීටා ශ්‍රිතවල සාධාරණීකරණයක් වූ සීගල් මාපාංතික ශ්‍රිත අනුසාරයෙන් ද ප්‍රකාශ කළ හැකි බව පෙන්වා දෙන ලදී. මෙම අහඹු බහුපදවල ක්‍රම , පංචජ සමීකරණ විසඳීම සඳහා සොයා ගන්නා ලද ක්‍රමවල සාධාරණීකරණයන්ය.
[[ප්‍රවර්ගය:ජ්‍යාමිතිය]]
[[ප්‍රවර්ගය:කලනය]]
 
 
[[en:Polynomial]]

සංස්කරණ

32,337

ක්

"https://si.wikipedia.org/wiki/විශේෂ:MobileDiff/141859" වෙතින් සම්ප්‍රවේශනය කෙරිණි